Green’s Function for the Fractional KDV Equation on the Periodic Domain via Mittag-Leffler Function
نویسندگان
چکیده
The linear operator c + (??)?/2, where > 0 and (??)?/2 is the fractional Laplacian on periodic domain, arises in existence of travelling waves Korteweg-de Vries equation. We establish a relation Green function this with Mittag-Leffler function, which was previously used context Riemann-Liouville Caputo derivatives. By using relation, we prove that strictly positive single-lobe (monotonically decreasing away from maximum point) for every ? ? (0, 2]. On other hand, argue numerical approximations case (2, 4], small non-positive non-single lobe large c.
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملFractional differential equations for the generalized Mittag-Leffler function
*Correspondence: [email protected] 3Department of Mathematical Sciences, UAE University, Al Ain, United Arab Emirates Full list of author information is available at the end of the article Abstract In this paper, we establish some (presumably new) differential equation formulas for the extended Mittag-Leffler-type function by using the Saigo-Maeda fractional differential operators involvin...
متن کاملThe Role of the Mittag-Leffler Function in Fractional Modeling
This is a survey paper illuminating the distinguished role of the Mittag-Leffler function and its generalizations in fractional analysis and fractional modeling. The content of the paper is connected to the recently published monograph by Rudolf Gorenflo, Anatoly Kilbas, Francesco Mainardi and Sergei Rogosin.
متن کاملFractional Calculus of the Generalized Mittag-Leffler Type Function
We introduce and study a new function called R-function, which is an extension of the generalized Mittag-Leffler function. We derive the relations that exist between the R-function and Saigo fractional calculus operators. Some results derived by Samko et al. (1993), Kilbas (2005), Kilbas and Saigo (1995), and Sharma and Jain (2009) are special cases of the main results derived in this paper.
متن کاملIncomplete Mittag - Leffler Function
This paper devoted to the study of incomplete Mittag-Leffler function and some of its properties in terms of incomplete Wright function. 2000 Mathematics Subject Classification: 33E12, 33B15, 11S80.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractional Calculus and Applied Analysis
سال: 2021
ISSN: ['1311-0454', '1314-2224']
DOI: https://doi.org/10.1515/fca-2021-0063